skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Herrel, Anthony"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. ABSTRACT Many species of lizards are partially enveloped by a dermal armour made of ossified units called osteoderms. Lizard osteoderms demonstrate considerable species-specific variation in morphology and histology. Although a physical/protective role (against predators, prey, conspecifics and impact loading during falls) is frequently advanced, empirical data on the biomechanics of lizard osteoderms are scarce, limiting our understanding of form–function relationships. Here, we report deformation recorded at the surface of temporal osteoderms during controlled external loading of preserved specimens of 11 lizard species (Tiliqua rugosa, Tiliqua scincoides, Corucia zebrata, Pseudopus apodus, Timon lepidus, Matobosaurus validus, Broadleysaurus major, Tribolonotus gracilis, Tribolonotus novaeguineae, Heloderma horridum and Heloderma suspectum). Based on the strain recorded in situ and from isolated osteoderms, the skin of the species investigated can be ranked along a marked stiffness gradient that mostly reflects the features of the osteoderms. Some species such as T. rugosa and the two Heloderma species had very stiff osteoderms and skin while others such as T. lepidus and P. apodus were at the other end of the spectrum. Histological sections of the osteoderms suggest that fused (versus compound) osteoderms with a thick layer of capping tissue are found in species with a stiff skin. In most cases, loading neighbouring osteoderms induced a large strain in the instrumented osteoderm, attesting that, in most species, lizard osteoderms are tightly interconnected. These data empirically confirm that the morphological diversity observed in lizard osteoderms is matched by variability in biomechanical properties. 
    more » « less
  3. Abstract The termterroiris used in viticulture to emphasize how the biotic and abiotic characteristics of a local site influence grape physiology and thus the properties of wine. In ecology and evolution, such terroir (i.e., the effect of space or “site”) is expected to play an important role in shaping phenotypic traits. Just how important is the pure spatial effect of terroir (e.g., differences between sites that persist across years) in comparison to temporal variation (e.g., differences between years that persist across sites), and the interaction between space and time (e.g., differences between sites change across years)? We answer this question by analyzing beak and body traits of 4388 medium ground finches (Geospiza fortis) collected across 10 years at three locations in Galápagos. Analyses of variance indicated that phenotypic variation was mostly explained by site for beak size (η2 = 0.42) and body size (η2 = 0.43), with a smaller contribution for beak shape (η2 = 0.05) and body shape (η2 = 0.12), but still higher compared to year and site‐by‐year effects. As such, the effect of terroir seems to be very strong in Darwin's finches, notwithstanding the oft‐emphasized interannual variation. However, these results changed dramatically when we excluded data from Daphne Major, indicating that the strong effect of terroir was mostly driven by that particular population. These phenotypic results were largely paralleled in analyses of environmental variables (rainfall and vegetation indices) expected to shape terroir in this system. These findings affirm the evolutionary importance of terroir, while also revealing its dependence on other factors, such as geographical isolation. 
    more » « less
  4. Oceanic islands are known as test tubes of evolution. Isolated and colonized by relatively few species, islands are home to many of nature’s most renowned radiations from the finches of the Galápagos to the silverswords of the Hawaiian Islands. Despite the evolutionary exuberance of insular life, island occupation has long been thought to be irreversible. In particular, the presumed much tougher competitive and predatory milieu in continental settings prevents colonization, much less evolutionary diversification, from islands back to mainlands. To test these predictions, we examined the ecological and morphological diversity of neotropicalAnolislizards, which originated in South America, colonized and radiated on various islands in the Caribbean, and then returned and diversified on the mainland. We focus in particular on what happens when mainland and island evolutionary radiations collide. We show that extensive continental radiations can result from island ancestors and that the incumbent and invading mainland clades achieve their ecological and morphological disparity in very different ways. Moreover, we show that when a mainland radiation derived from island ancestors comes into contact with an incumbent mainland radiation the ensuing interactions favor the island-derived clade. 
    more » « less
  5. Abstract The early diversification of tetrapods into terrestrial environments involved adaptations of their locomotor apparatus that allowed for weight support and propulsion on heterogeneous surfaces. Many lineages subsequently returned to the water, while others conquered the aerial environment, further diversifying under the physical constraints of locomoting through continuous fluid media. While many studies have explored the relationship between locomotion in continuous fluids and body mass, none have focused on how continuous fluid media have impacted the macroevolutionary patterns of limb shape diversity.We investigated whether mammals that left terrestrial environments to use air and water as their main locomotor environment experienced constraints on the morphological evolution of their forelimb, assessing their degree of morphological disparity and convergence. We gathered a comprehensive sample of more than 800 species that cover the extant family‐level diversity of mammals, using linear measurements of the forelimb skeleton to determine its shape and size.Among mammals, fully aquatic groups have the most disparate forelimb shapes, possibly due to the many different functional roles performed by flippers or the relaxation of constraints on within‐flipper bone proportions. Air‐based locomotion, in contrast, is linked to restricted forelimb shape diversity. Bats and gliding mammals exhibit similar morphological patterns that have resulted in partial phenotypic convergence, mostly involving the elongation of the proximal forelimb segments.Thus, whereas aquatic locomotion drives forelimb shape diversification, aerial locomotion constrains forelimb diversity. These results demonstrate that locomotion in continuous fluid media can either facilitate or limit morphological diversity and more broadly that locomotor environments have fostered the morphological and functional evolution of mammalian forelimbs. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  6. null (Ed.)
    Extreme climate events such as droughts, cold snaps, and hurricanes can be powerful agents of natural selection, producing acute selective pressures very different from the everyday pressures acting on organisms. However, it remains unknown whether these infrequent but severe disruptions are quickly erased by quotidian selective forces, or whether they have the potential to durably shape biodiversity patterns across regions and clades. Here, we show that hurricanes have enduring evolutionary impacts on the morphology of anoles, a diverse Neotropical lizard clade. We first demonstrate a transgenerational effect of extreme selection on toepad area for two populations struck by hurricanes in 2017. Given this short-term effect of hurricanes, we then asked whether populations and species that more frequently experienced hurricanes have larger toepads. Using 70 y of historical hurricane data, we demonstrate that, indeed, toepad area positively correlates with hurricane activity for both 12 island populations of Anolis sagrei and 188 Anolis species throughout the Neotropics. Extreme climate events are intensifying due to climate change and may represent overlooked drivers of biogeographic and large-scale biodiversity patterns. 
    more » « less